Maximizing utilization of reactivated and left-over catalysts in heavy gas oil hydrotreater: A case study of ADNOC Refining

Author:

Laveille PacoORCID,Chaudhry Abdul-Hamid,Riva Alessandro,Salameh Alain,Singaravel Gnanapragasam,Dufresne Pierre,Morin Stephane,Berthod Mikael

Abstract

Recently, ADNOC Refining Research Center (ARRC) has studied the possibility to maximize the reutilization of left-overs and reactivated hydrodesulfurization catalysts for one of its hydrotreater producing Ultra Low Sulfur Diesel (ULSD) from Heavy Gas Oil (HGO). Based on the refinery inventory, several catalyst configurations composed of different amounts of reactivated and fresh CoMo catalyst, including a full reactivated configuration having a stacked CoMo/NiMo/CoMo combination (50/25/25), have been tested in a pilot-plant reactor under commercially-relevant conditions. Experimental results in terms of reactor bed temperature, H2 consumption, aromatics and diesel yields have been analyzed and compared to the current commercial hydrotreater load and catalyst supplier forecasts for the studied configurations. Results show excellent performances of reactivated catalysts and a strong effect of the NiMo layer in the case of the stacked configuration. In a pure CoMo configuration, up to 75% reactor volume of reactivated catalyst could be utilized without impacting the product quality and cycle length, compared to a full fresh CoMo catalyst load. The full reactivated stacked configuration performed even better than the full fresh CoMo catalyst, without impacting product quality and diesel yield. Potential effect of the reactivated catalysts on the reaction selectivity and the role of the NiMo layer in the stacked configuration are discussed. Pilot-plant experimental data were in strong accordance with catalyst supplier commercial forecasts, emphasizing the quality of the pilot-plant study. Implementation of one of the studied configuration by the refinery could lead to between 30% and 55% savings on the cost of catalyst for the next load.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3