The effectiveness of computed tomography for the experimental assessment of surfactant-polymer flooding

Author:

Tapias Hernández Fabián AndrésORCID,Moreno Rosângela Barros Zanoni LopesORCID

Abstract

The Surfactant-Polymer (SP) process is a type of Chemical Enhanced Oil Recovery (CEOR) method. They are still a challenge for the petroleum oil industry mainly because of the difficulty in designing and forecasting the process behavior on the field scale. Therefore, understanding of the phenomena associated with a CEOR process is of vital importance. For these reasons, this work discusses the benefits of Computed Tomography (CT) uses for the experimental assessment of a SP process. The research includes a literature review that allows identifying the main CT usages for petroleum engineering and a discussion concerning the effectiveness of mathematic expressions proposed for the tomography images treatment of two-phase flow displacement. The conducted experimental methodology can be reproduced to assess the benefits of any chemical Enhanced Oil Recovery (EOR) process with CT. Thus, this paper assesses the conventional waterflooding (WF) and SP flooding as secondary and tertiary oil recovery methods. The developed study allowed us to evaluate through CT images the porosity and the saturation profiles along the rock sample. Also, CT processed data enabled checking the volumetric material balance and determine the oil Recovery Factor (RF). The doubled checked SP data showed an RF increase of 17 and 10 percentage points for secondary and tertiary chemical injection schemes respect to conventional waterflooding. Finally, comparative results of the water cut (Wcut) evidenced the mobility ratio improvement and reduction on the remaining oil saturation.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference41 articles.

1. British Petroleum BP statistical review of world energy statistical review of world, Ed. BP Stat. Rev. World Energy 1–69.

2. Sheng J.J. (2013) Enhanced oil recovery field case studies, Gulf Professional Publishing, 712 p.

3. Lake L.W. (1991) Enhanced oil recovery, Facsimile (ed), Prentice-Hall, Englewood Cliffs.

4. EOR Screening Criteria Revisited— Part 1: Introduction to Screening Criteria and Enhanced Recovery Field Projects

5. Shandrygin A., Lutfullin A. (2008) Current status of enhanced recovery techniques in the fields of Russia, SPE Annu. Tech. Conf. Exhib., 1–24 September, Denver, Colorado, USA, pp. 21–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3