Refinery processed water treatment via the low energy Direct Contact Membrane Distillation (DCMD)

Author:

El Kadi Khadije,Janajreh Isam,Hashaikeh Raed,Ahmed Rizwan

Abstract

The amount of refinery water discharged to the environment from oil industry has increased vigorously in current times. Recent research has been focusing on the use of membrane technology for the refinery processed water treatment. Membrane Distillation (MD) is an emerging technology that has been highly marked by its low-energy requirement and high desalination efficiency. However, conventional MD membranes (i.e. PVDF) are not feasible for oil-water separation processes. That is due to the oleo-philic property of the membrane and thus, causes membrane fouling and halts the production of mass flux. An anti-oil-fouling membrane is essential for a successful oil-water separation by MD. Underwater-oleophobic as well as omniphobic are two different approaches in fabricating such membranes. The former approach is based on the asymmetric surface wettability, whereas the latter is attributed to the surface structure that is characterized by having a very large contact angle for all liquids. However, such composite membranes are characterized by their lower porosity, smaller pore size, but with unique surface slippage, in comparable with the conventional PVDF membranes. As such, in this work, high fidelity numerical simulation of DCMD is performed using non-isothermal Computational Fluid Dynamics (CFD) validated model in order to assess the role of the anti-oil-fouling membrane properties on the performance of the DCMD. Results are presented in terms of temperature polarization coefficient, mass flux, latent heat flux, and thermal efficiency. Results show the compromising effect of membrane porosity to 45% reduces the mass flux and thermal efficiency respectively by 68% and 40%, and reduction of pore size to the half (i.e. 50 nm) can cause a reduction by 50.6% in mass flux and 24.18% in thermal efficiency compared to the baseline (i.e. 100 nm). On the other hand, the omniphobic slippage effect leads to a noticeable gain of 16% in DCMD mass flux with slight gain in thermal efficiency. This can maximize mass flux and thermal efficiency to be as much as 50.3 kg/m2 h and 69%, respectively.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3