A review on hazards and risks to pipeline operation under transporting hydrogen energy and hydrogen-mixed natural gas

Author:

Li Ji,Song Fumei,Zhang Xiaoqian

Abstract

As an efficient and clean fuel, hydrogen energy plays an important role in relieving the energy crisis and achieving the orientation of zero carbon emissions. Transportation is the key link in the construction of hydrogen energy infrastructure. For large-scale and long-distance transportation of hydrogen, pipeline transportation has the advantages of high efficiency and cost saving. While using the existing natural gas pipeline to transport hydrogen, it would economize the economic cost, time cost and labor cost. However, the transportation of hydrogen may bring more hazards and risks. Based on the investigation of a large number of literatures, the research advance in hydrogen embrittlement, leakage, combustion and explosion risk of hydrogen and hydrogen-mixed natural gas pipelines was reviewed. The mechanism, research means and evaluation methods of hydrogen embrittlement, as well as the experimental and numerical simulation research results of leakage, combustion and explosion were discussed in detail. The definite and important conclusions include: (1) For buried hydrogen-mixed natural gas transportation pipeline, the leakage rate of hydrogen and methane is the same, the formation of the leakage crater is foreign to the nature of leakage gas. (2) When adding less than 25 volume percentage of hydrogen into the natural gas pipelines, the explosion risk would not be increased. Future research should focus on the risk prediction, quantitative risk assessment, intelligent monitoring, and explosion-suppression technical measures of hydrogen and hydrogen-mixed natural gas transportation pipelines, so as to establish comprehensive and multi-level pipeline safety protection barriers.

Publisher

EDP Sciences

Reference133 articles.

1. IEA (2022) World Energy Outlook 2022. IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2022, License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A).

2. IEA (2021) Net Zero by 2050. IEA, Paris. https://www.iea.org/reports/net-zero-by-2050, License: CC BY 4.0.

3. IEA (2021) Global Hydrogen Review 2021. IEA, Paris. https://www.iea.org/reports/global-hydrogen-review-2021, License: CC BY 4.0.

4. IEA (2022), Global Hydrogen Review 2022, IEA, Paris. https://www.iea.org/reports/global-hydrogen-review-2022, License: CC BY 4.0.

5. IEA (2022) Hydrogen. 2022, IEA, Paris. https://www.iea.org/reports/hydrogen, License: CC BY 4.0.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3