Hydrogen and air storage in salt caverns: a thermodynamic model for phase equilibrium calculations

Author:

Kiemde Abdoul FattahORCID,Ferrando Nicolas,de Hemptinne Jean-CharlesORCID,Le Gallo YannORCID,Reveillère Arnaud,Roa Pinto Juan Sebastian

Abstract

When storing gas in a salt cavern, it occupies most of the excavated volume, but the lower part of the cavern inevitably contains residual brine, in contact with the gas. The design of hydrogen and compressed air storage in salt caverns requires to have a thermodynamic model able to accurately predict both phase properties such as densities, and phase equilibrium (gas solubility and water content of the vapour phase). This work proposes a parameterization of the e-PPC-SAFT equation of state in this context. Experimental data of pure components and mixtures of light gas + pure water and light gas + salted water are reviewed and used to fit pure component parameters for hydrogen, nitrogen, oxygen, and the brine, and binary interaction parameters between H2, O2, N2 + water and H2, O2, N2 + ions (Na+ and Cl), for temperature ranging from 273 to 473 K and salinities up to NaCl saturation (6 mol/kg). The model developed delivers good accuracy in reproducing data: the average deviation between experiments and calculated data is between 3% and 9% for gas solubility in saturated brine. More interestingly, the model has been validated on its capability to predict data not included in the parameterization database, including the composition of the vapor phase, and its extension to a mixture, such as air. Finally, it has been used in a case study of Compressed Air Energy Storage (CAES) to evaluate the water content of the gas produced during injection-withdrawing cycles.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference102 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carnot: a thermodynamic library for energy industries;Science and Technology for Energy Transition;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3