Titanium dioxide Ag NP enhanced solid solar cell electrodes for favourable efficiency

Author:

Njoroge David K.

Abstract

Population growth leads to a heightened demand for working potential to support modern commercial and residential evolutions. Available conventional energy sources, however, cause environmental pollution and severe health problems like global warming. The current energy sources also face challenges due to factors like global warming that make hydro-generated energy production even more difficult due to droughts. Therefore, alternative energy options need to be explored. The study in question aimed to find a cost-effective and environmentally friendly energy source by fabricating a solar cell that uses titanium dioxide and potassium iodate (mixed in carbon) layers in a solidified structure. TiO2 was chosen due to its photo-generating properties and synthetic steadiness over a spread acidity/basicity neutrality. The iodine/iodide complex was used to replenish the photo-excited electrons while graphite facilitated their migration. The researchers varied the ingredients capacities for the separate electrodes keeping the rest unvaried for improved (I-V) terminal parameters. Deduction from the research established that the (0.4:0.3:0.17:0.01) TiO2/CX:I2:KI proportions resulted in the optimum charge range generation. The inclusion of potassium iodate (KI) improved iodine solvability and facilitated even dispersal in graphite, which was maintained at 0.01 g in all cells. The absorber and receptive layer thicknesses of 2.00 mm and 1.00 mm respectively generated the best 0.979 V open-circuit voltage (Voc) and 12.037 μA short-circuit current (Isc) results. Favorable (10.46%) efficiency (η) and (0.64) fill factor (FF) were derived. Conducting transparent glass was suggested for improving the linkage to the external circuit and models of reducing air pockets in the solid TiO2 photovoltaic devices could further enhance their performance.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference15 articles.

1. Adegbenro A. (2016) Comparison of novel and state of the art solar cells, University of Kessel, Germany.

2. Use of PV systems in remote car filling stations

3. Dye-sensitized solar cells

4. Grätzel M. (2009) Energy resources through photochemistry and catalysis, technology and engineering, New York Academic Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3