Evaluation of the unsteady flamelet progress variable approach in Large Eddy Simulations of the ECN Spray A

Author:

Gierth Sandro,Haspel PhilipORCID,Scholtissek ArneORCID,Sun Zhen,Popp Sebastian,Hasse ChristianORCID

Abstract

Within the Unsteady Flamelet Progress Variable – Large Eddy Simulation (UFPV-LES) approach the local scalar dissipation rate represents one key parameter, significantly affecting the ignition behaviour. In this study, the UFPV-LES approach is evaluated for ECN Spray A baseline conditions, relevant for diesel engines. After confirming its general applicability, using experimental data under non-reacting and reacting conditions, special attention is paid to the distribution of the local scalar dissipation rate. Based on the findings of this analysis, a reduced modeling approach, considering only igniting flamelets starting from the adiabatic mixing line between the fuel and oxidizer, is investigated. The performance of this reduced approach is assessed systematically, using the UFPV-LES results as a reference. Based on an a-priori analysis, regions affected by the model reduction are identified and evaluated. A subsequent evaluation in an a-posteriori analysis, i.e. a coupled LES, reveals similar results in terms of local flame structure as well as global ignition characteristics and confirms the applicability of the reduced model under the ECN Spray A baseline conditions.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3