Fatigue analysis of brazing structures with fin-plate-side bar in Liquefied Natural Gas (LNG) heat exchangers under cryogenic conditions

Author:

Ma Hongqiang,Jia Jiwei,Liu Yu,Luo Xinmei,Hou CaiqinORCID,Wang Gang

Abstract

The purpose of this study is to evaluate the fatigue life of heat exchangers used for Liquefied Natural Gas (LNG) and to ensure its structural safety, the alternating stress of brazing structures under cryogenic conditions was analyzed with a Finite Element Model (FEM). Stress concentrations occurred at the brazed joint with a maximum alternating stress amplitude of 153.45 MPa. The fatigue life of brazed structures during the continuous cool-down and heat-up conditions was evaluated based on the ASME standard and the maximum alternating stress amplitude. Meanwhile, structure parameters have been analyzed for their influence on fatigue life. There are four main structure factors to influence the life cycle: the brazing seam, the fin thickness, the fin distance, and the fin height. The life cycle will decrease with increasing the fin distance, fin height, and brazing seam thickness, and it will increase with increasing the fin thickness. In addition, in order to predict fatigue life, a calculating model has been established based on the main factors. Finally, the fatigue life of brazing structures was also tested by experiment, and the microstructure was also analyzed for the fatigue fracture surface. It is clear that brittle fractures along the brazing seam and ductile fractures at the fin roots should be the primary failure modes. The study provides a base for LNG aluminum heat exchanger design, manufacture, and safe operation.

Funder

Natural Science Foundation of Gansu Province

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3