Study on structural design and hydrodynamic response law of new floating wind power fishery integration

Author:

Zhu Jiangfeng,Cao Yuguang,Liu Yuanyuan,Ren Chenyi,Zhao Qiankun

Abstract

The new lattice floating wind turbine integrated system (also known as Dot Matrix Floating wind turbine, and hereinafter referred to as DMF) is proposed as a new concept. It is a design scheme that combines multiple wind turbines into a polygonal floating foundation in the form of a lattice arrangement, which can meet the research and development requirements of higher power generation equipment in the future. More far-reaching, it has obvious advantages over the traditional floating wind turbine scheme in terms of structural cost and motion stability, which provides a new idea for the development of offshore wind power energy. Firstly, the structural parameters and mechanical model of DMF are analyzed to determine the feasibility and superiority of the overall scheme of the new lattice foundation. Combined with the traditional OC4 semi-submersible wind turbine system, the hydrodynamic simulation under wind, wave, and current load is carried out, and the hydrodynamic response law of DMF under the different environmental factors is summarized and analyzed. It is concluded that the stability of DMF in pitching motion is 70% higher than that of traditional OC4 system. In order to further verify the feasibility of the DMF system and the accuracy of the theoretical model, based on the similarity theory, this study carried out the small-scale prototype processing of DMF and the simulation experiment of wind wave flume. The test results are in good agreement with the simulation data. Finally, aiming at the problem of the large amplitude of swaying motion response of DMF in the simulation results, a mooring optimization scheme suitable for the new DMF is proposed, which provides 47% stability compared with the traditional catenary mooring through comparative analysis. This study provides a reference and theoretical basis for the research and development of offshore multi-wind turbine combined equipment and hydrodynamic stability optimization. It has certain theoretical guiding significance and economic development value.

Funder

Research on Key Technologies of marine fishery electricity integrated development system

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3