New insights into tracer propagation in partially saturated porous media

Author:

Leontidis VlasiosORCID,Youssef Souhail,Bauer Daniela

Abstract

This work deals with the influence of partial saturation on the transport process of a passive tracer. Transport experiments were done in a water-wet glass micromodel combined with specific optical techniques. Full water saturation was achieved by injecting initially the background solution and then the tracer, whereas for the partial saturation conditions, the micromodel was initially saturated with oil, and then sequential the background solution and the tracer were injected at the same flow rate. We have shown that in the investigated range of water saturations it exists a transition in the oil ganglia structure and size. For high water saturations oil ganglia have one or two pores in size, however for lower water saturations they comprise an important number of pores. Transport strongly depends on the size distribution of the oil ganglia as they create large percolating paths and stagnant zones. We also showed the existence of two different types of stagnant zones: zones accessible by diffusion into pores and zones only accessible by spatially limited diffusion in films. The major advantage of using glass micromodels lies in the fact that dispersion coefficients can be computed from concentrations averaged over the pore space or from concentrations at the outlet and simultaneously from spatial concentration profiles. Curves were fitted using the Advection–Dispersion Equation (ADE) with adequate boundary conditions. The fitting quality of the temporal evolution of the average and outlet concentration was very good. However, fitting of the concentration profiles could only be done for the higher water saturations. This is due to the fact that the Representative Elementary Volume (REV) of lower water saturations is larger than the micromodel. The results show that fitting the breakthrough curve in order to determine the dispersion coefficient in a partially saturated porous medium might be misleading. Indeed, when fitting the breakthrough curves we were able to compute a dispersion coefficient even in the case where the REV of the water saturation is larger than the micromodel. Consequently, the knowledge of the local concentration profiles as a function of time is necessary as it provides an additional information on the spatio-temporal behavior of the transport process and therefor a supplementary constraint of the fitting procedure. Finally, we observed a time dependent dispersion coefficient in the regime where oil ganglia comprise several pores. This fact might be attributed to the non-Gaussian nature of the transport.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference25 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3