Experimental investigation on precipitation damage during water alternating flue gas injection

Author:

Wang Zhouhua,Zhang YupingORCID,Liao Haoqi

Abstract

Water Alternating Gas (WAG) approach can improve the efficiency of gas flooding. However, the precipitation damage that is induced by the gas injection may be inevitable. The precipitation pressure point test of gas injection, and the WAG parallel double-tube long-core flooding experiment under different injection conditions were systematically performed to obtain the optimum injection parameters. The variations of petrophysical properties were caused by precipitation, and its morphology was also determined by centrifugal capillary force and environmental scanning electron microscope. The precipitation pressure rised with the increase of the amount of gas injection, generally 2.0 MPa ~ 3.0 MPa higher than the bubble point pressure (Pb), and it was confirmed by X-ray energy spectrum and scanning electron microscope that the precipitation was mainly asphaltene. The optimum injection parameters for WAG were Gas–Water Ratio (GWR) of 1:1 and slug size of 0.1 HydroCarbon Pore Volume (HCPV), which benefited the recovery of low-permeability and high-permeability pipe by additional recovery of 28.5% and 17.4% respectively, while WAG process enhanced the total oil recovery by 23.4%. The pore volume and median radius of capillary pressure of all cores were both reduced with more obvious effects on conglomerate. Combined with the results of sediment saturation, it also showed the poorer the physical properties of the cores, the severer the influence of the precipitation. Overall, the WAG could greatly improve the recovery but the influence of precipitation must be considered.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3