Semi-clathrate hydrate phase stability conditions for methane + TetraButylAmmonium Bromide (TBAB)/TetraButylAmmonium Acetate (TBAA) + water system: Experimental measurements and thermodynamic modeling

Author:

Irannezhad Hamideh,Javanmardi Jafar,Rasoolzadeh AliORCID,Mehrabi KhayyamORCID,Mohammadi Amir H.

Abstract

One of the promising applications of clathrate/gas hydrates is the transport and storage of natural gas. Semi-clathrate hydrates have received more attention due to milder pressure/temperature stability conditions compared to ordinary clathrate hydrates. The most commonly reported semi-clathrate hydrates are formed from a combination of gas + water + quaternary ammonium salts. In this work, a total of 53 equilibrium data for semi-clathrate hydrates of methane + TetraButylAmmonium Bromide (TBAB)/TetraButylAmmonium Acetate (TBAA) aqueous solutions were experimentally measured. For TBAB, three concentrations including 0.0350, 0.0490, and 0.1500 mass fractions were used. For TBAA, a solution with a 0.0990 mass fraction was used. Additionally, the modified Chen–Guo model was applied to calculate the hydrate phase equilibrium conditions of methane + TBAB/TBAA aqueous solutions. The model can accurately calculate the aforementioned semi-clathrate hydrate phase equilibrium conditions with the Average Absolute Deviations ((AAD)T and (AAD)P) of 0.1 K and 0.08 MPa, respectively. The temperature increments for 0.0350, 0.0490, and 0.1500 mass fractions of TBAB are 7.7, 9.4, and 13.5 K, respectively. This value for 0.0990 mass fraction of TBAA is 6.2 K. Therefore, it is concluded that TBAB is a stronger hydrate promoter compared to TBAA.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference56 articles.

1. US Energy Information Administration (2019) U.S. Energy-Related Carbon Dioxide Emissions.

2. The state of natural gas

3. Mokhatab S., Poe W.A. (2012) Handbook of natural gas transmission and processing, Gulf Professional Publishing, United State of America.

4. Gudmundsson J., Borrehaug A. (1996) Frozen hydrate for transport of natural gas, in: NGH 96: 2nd International Conference on Natural Gas Hydrates, Toulouse, June 2–6, 1996, pp. 415–422.

5. Dawe R.A. (2003) Hydrate technology for transporting natural gas. http://hdl.handle.net/10576/7797.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3