Abstract
Intraformational water zones are widely reported in Canadian oil sands fields. In order to pressurize a thief zone, one of the initiatives is to inject gas. However, the evaluation of gas injectivity based on a pore size distribution is still a big challenge. This study provides a multi-scale approach to study the effect of a pore size distribution on gas injectivity in intraformational water zones. The results indicate the gas effective permeability increases in a less complex and more discrete pore network. The enhancement of gas effective permeability with increased gas saturation weakens with higher complexity and lower discreteness of a pore network. A less complex and more discrete pore network better benefits the gas injectivity index.
Funder
National Natural Science Foundation of China
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献