Mechanical properties and X-ray diffraction analyses of clay/sand pellets for CO2 adsorption: the effects of sand content and humidity

Author:

Iglesias IsaacORCID,Jiménez Mayra,Gallardo Andrea M.ORCID,Ávila Edward E.ORCID,Morera VivianORCID,Viloria Alfredo,Ricaurte MarvinORCID,Tafur Juan P.ORCID

Abstract

In this work, we report the mechanical properties of an alternative material based on a mixture of natural clay and ferruginous sand in pellet form for CO2 capture. These raw materials were collected from Ecuador, and they contain iron and titanium oxides from volcanic origin. To evaluate the effect of the sand content on the mechanical properties of pellets, the samples were manually prepared with 0 (control sample), 15, and 25 wt.% sand contents and analyzed using free-fall drop impact and uniaxial compression tests. The uniaxial compression test was carried out under three conditions: using sieved sand, using sand without sieving, and under wet conditions. The sand contents caused the drop number to decrease in the free-fall drop impact test. From the uniaxial compression test, the compressive strength, elastic modulus, and toughness were calculated. The elastic modulus showed a better performance for samples with lower porosity. The compressive strength demonstrated higher values for samples with 15 wt.% sand contents than for samples with the other sand contents. The toughness values did not significantly change. It was evidenced that the porosity, mineral composition, and humidity exerted an influence during the mechanical tests. The mineral phases were analyzed by X-ray diffraction, and quantitative analysis based on whole-powder-pattern fitting revealed that the iron and titanium oxide contents increased as the concentration of sand in the pellets increased.

Funder

SENESCYT, Ecuador

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3