Experimental and modeling studies of density and viscosity behavior of a live fluid due to CO2 injection at reservoir condition

Author:

Santos David C.ORCID,Lamim Marina N.ORCID,Costa Daniela S.ORCID,Mehl AnaORCID,Couto PauloORCID,Paredes Márcio L. L.ORCID

Abstract

In this study, highly accurate measurements of density and dynamic viscosities of a recombined live oil and its mixture with additional CO2 were performed. The experiments were carried out under pressure and temperature gradients found in Brazilian Pre-salt reservoirs, that is, in the pressure range from (27.6 to 68.9) MPa and at (333.15 and 353.15) K. The assumption of volume change on mixing is evaluated from the experimental results, and the influence of pressure and temperature on the volume change upon mixing is assessed. The densities of mixtures are calculated considering (i) the excess volume approach, and (ii) no volume change. The densities are better correlated using the excess volume approach with Average Absolute Deviations (AAD) of 0.03%. Thirteen mixing rules of viscosity are examined by comparing the predicted values with the experimental viscosity of the recombined live oil + CO2 mixture. The performance of some rules using compositional fractions (molar, volume and weight) is also evaluated. Thus, a total of 28 different ways to calculate the mixture viscosities were tested in this study. The worst result was obtained with Bingham’s method, leading to 148.6% AAD. The best result was obtained from Lederer’s method with 2% AAD and a maximum deviation of 5.8% using volume fractions and the fitting parameter α. In addition, deviations presented by the predictive methods of Chevron, Double log, and Kendall did not exceed 9% AAD, using weight fractions (Chevron and Double log) and molar fractions (Kendall and Monroe).

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3