Ensemble-based method with combined fractional flow model for waterflooding optimization

Author:

Santos Oliveira DilayneORCID,Horowitz BernardoORCID,Rojas Tueros Juan AlbertoORCID

Abstract

Proxy models are widely used to estimate parameters such as interwell connectivity in the development and management of petroleum fields due to their low computational cost and not require prior knowledge of reservoir properties. In this work, we propose a proxy model to determine both oil and water production to maximize reservoir profitability. The approach uses production history and the Capacitance and Resistance Model based on Producer wells (CRMP), together with the combination of two fractional flow models, Koval [Cao (2014) Development of a Two-phase Flow Coupled Capacitance Resistance Model. PhD Dissertation, The University of Texas at Austin, USA] and Gentil [(2005) The use of Multilinear Regression Models in patterned waterfloods: physical meaning of the regression coefficient. Master’s Thesis, The University of Texas at Austin, USA]. The proposed combined fractional flow model is called Kogen. The combined fractional flow model can be formulated as a constrained nonlinear function fitting. The objective function to be minimized is a measure of the difference between calculated and observed Water cut (Wcut) values or Net Present Values (NPV). The constraint limits the difference in water cuts of the Koval and Gentil models at the time of transition between the two. The problem can be solved using the Sequential Quadratic Programming (SQP) algorithm. The parameters of the CRMP model are the connectivity between wells, time constant and productivity index. These parameters can be found using a Nonlinear Least Squares (NLS) algorithm. With these parameters, it is possible to predict the liquid rate of the wells. The Koval and Gentil models are used to calculate the Wcut in each producer well over the concession period which in turn allows to determine the accumulated oil and water productions. To verify the quality of Kogen model to forecast oil and water productions, we formulated an optimization problem to maximize the reservoir profitability where the objective function is the NPV. The design variables are the injector and producer well controls (liquid rate or bottom hole pressure). In this work the optimization problem is solved using a gradient-based method, SQP. Gradients are approximated using an ensemble-based method. To validate the proposed workflow, we used two realistic reservoirs models, Brush Canyon Outcrop and Brugge field. The results are shown into three stages. In the first stage, we analyze the ensemble size for the gradient computation. Second, we compare the solutions obtained with the three fractional flow models (Koval, Gentil and Kogen) with results achieved directly from the simulator. Third, we use the solutions calculated with the proxy models as starting points for a new high-fidelity optimization process, using exclusively the simulator to calculate the functions involved. This study shows that the proposed combined model, Kogen, consistently generated more accurate results. Also, CRMP/Kogen proxy model has demonstrated its applicability, especially when the available data for model construction is limited, always producing satisfactory results for production forecasting with low computational cost. In addition, it generates a good warm start for high fidelity optimization processes, decreasing the number of simulations by approximately 65%.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3