Conversion of heavy gasoil into ultra-low sulfur and aromatic diesel over NiWRu/TiO2–γAl2O3 catalysts: Role of titanium and ruthenium on improving catalytic activity

Author:

Prada Silvy Ricardo,Lageshetty Sathish Kumar

Abstract

This contribution deals with about selective conversion of heavy gas oils into middle distillates fuels that meet ultra-low sulfur and aromatic compound quality standards by using a novel NiWRu/TiO2γAl2O3 catalyst under typical hydrotreatment conditions. A diesel fuel fraction having sulfur, nitrogen and aromatics compound content of about 50 ppm, 10 ppm and 15 v%, respectively, was obtained when the reactor was operated at T = 370 °C, P = 12.4 MPa, LHSV = 0.5 h−1 and H2/hydrocarbon ratio = 800 Nm3/m3. Titanium and ruthenium additives used in the preparation of the NiWRu/TiO2γAl2O3 catalyst, remarkably improved the catalytic activities for the hydrogenolysis, hydrogenation and hydrocracking reactions compared to the reference NiW/γAl2O3 catalyst. The coprecipitation of titanium and aluminum hydroxides produced a catalyst support having greater surface area, pore volume and surface acidity. An improvement in mechanical properties of the support extrudates was also observed. Characterization analysis by XPS, AUGER and XRD techniques of the TiO2γAl2O3 support suggested the formation of an aluminum-titanate mixed phase (AlxTiyOz) having a non-well-defined stoichiometry. The NiW/TiO2γAl2O3 and NiWRu/TiO2γAl2O3 exhibited a greater surface dispersion of the supported nickel and tungsten species compared to the NiW/γAl2O3 catalyst. The promoter effect of ruthenium on the NiW bimetallic system caused a strong increase in both hydrogenolysis and hydrogenation reactions. Hydrodenitrogenation and hydrocracking reactions were also favored by the increase in the hydrogenation capacity and in the surface acidity of the catalyst. The highest conversion levels for all investigated reactions were obtained when the NiWRu/TiO2γAl2O3 catalyst was prepared by co-impregnation of Ni and Ru in a second step. This catalyst showed sulfur tolerance properties when the reaction was conducted in the presence of different H2S partial pressures. The catalytic behavior of the NiWRu/TiO2γAl2O3 catalyst was explained by the existence of a promoting effect between separated Ni and Ru sulfides species and the NiWS phase (dual mechanism).

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference73 articles.

1. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production

2. Highly active CoMo HDS catalyst for the production of clean diesel fuels

3. Asian Clean Fuel Association, CAI-Asia (2011) A Road Map for cleaner Fuels and vehicles in Asia, Factsheet 17, September 2011.

4. Peckham J. (2006) Road Map for Asia’ Pushes Cleaner Fuels; “Gradual” desulfurization seen inefficient, Diesel Fuel News Jun 5, 10–12.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3