Optimized Random Vector Functional Link network to predict oil production from Tahe oil field in China

Author:

Alalimi AhmedORCID,Pan LinORCID,Al-qaness Mohammed A.A.ORCID,Ewees Ahmed A.ORCID,Wang XiaoORCID,Abd Elaziz MohamedORCID

Abstract

In China, Tahe Triassic oil field block 9 reservoir was discovered in 2002 by drilling wells S95 and S100. The distribution of the reservoir sand body is not clear. Therefore, it is necessary to study and to predict oil production from this oil field. In this study, we propose an improved Random Vector Functional Link (RVFL) network to predict oil production from Tahe oil field in China. The Spherical Search Optimizer (SSO) is applied to optimize the RVFL and to enhance its performance, where SSO works as a local search method that improved the parameters of the RVFL. We used a historical dataset of this oil field from 2002 to 2014 collected by a local partner. Our proposed model, called SSO-RVFL, has been evaluated with extensive comparisons to several optimization methods. The outcomes showed that, SSO-RVFL achieved accurate predictions and the SSO outperformed several optimization methods.

Funder

This research was supported by Tomsk Polytechnic University Competitiveness Enhancement Program.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3