Generalized Multi-Scale Stochastic Reservoir Opportunity Index for enhanced well placement optimization under uncertainty in green and brownfields

Author:

Vaseghi Forough,Ahmadi MohammadORCID,Sharifi Mohammad,Vanhoucke Mario

Abstract

Well placement planning is one of the challenging issues in any field development plan. Reservoir engineers always confront the problem that which point of the field should be drilled to achieve the highest recovery factor and/or maximum sweep efficiency. In this paper, we use Reservoir Opportunity Index (ROI) as a spatial measure of productivity potential for greenfields, which hybridizes the reservoir static properties, and for brownfields, ROI is replaced by Dynamic Measure (DM), which takes into account the current dynamic properties in addition to static properties. The purpose of using these criteria is to diminish the search region of optimization algorithms and as a consequence, reduce the computational time and cost of optimization, which are the main challenges in well placement optimization problems. However, considering the significant subsurface uncertainty, a probabilistic definition of ROI (SROI) or DM (SDM) is needed, since there exists an infinite number of possible distribution maps of static and/or dynamic properties. To build SROI or SDM maps, the k-means clustering technique is used to extract a limited number of characteristic realizations that can reasonably span the uncertainties. In addition, to determine the optimum number of clustered realizations, Higher-Order Singular Value Decomposition (HOSVD) method is applied which can also compress the data for large models in a lower-dimensional space. Additionally, we introduce the multiscale spatial density of ROI or DM (D2ROI and D2DM), which can distinguish between regions of high SROI (or SDM) in arbitrary neighborhood windows from the local SROI (or SDM) maxima with low values in the vicinity. Generally, we develop and implement a new systematic approach for well placement optimization for both green and brownfields on a synthetic reservoir model. This approach relies on the utilization of multi-scale maps of SROI and SDM to improve the initial guess for optimization algorithm. Narrowing down the search region for optimization algorithm can substantially speed up the convergence and hence the computational cost would be reduced by a factor of 4.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of fast marching method and quality map to well trajectory optimization with a novel well parametrization;Geoenergy Science and Engineering;2023-12

2. Improved history matching of channelized reservoirs using a novel deep learning-based parametrization method;Geoenergy Science and Engineering;2023-10

3. Field Development Optimization Under Geological Uncertainty;Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization;2023

4. Dimensionality Reduction Methods Used in History Matching;Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization;2023

5. Toward investigating the application of reservoir opportunity index in facilitating well placement optimization under geological uncertainty;Journal of Petroleum Science and Engineering;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3