Heat dissipation of the Electrical Submersible Pump (ESP) installed in a subsea skid

Author:

Martins Jonathan RibeiroORCID,Ribeiro Daniel da CunhaORCID,Pereira Fabio de Assis Ressel,Ribeiro Marcos Pellegrini,Romero Oldrich JoelORCID

Abstract

The recent development of Electrical Submersible Pump (ESP) in the skid, installed in the seabed downstream of the wellhead in an offshore oil production system, is an alternative to the conventional system with the set installed at the bottom of the producing well, facilitating interventions in case of failure. The pump is driven by an electric motor whose cooling must be efficient to ensure the continuity of its operation. The heat withdrawal is performed by the fluid produced. The purpose of this article is to understand the process of electric motor cooling to the single-phase and turbulent flow with convection heat transfer in an annular geometry, which represents the space formed between a capsule and the ESP in the Skid system motor. With this objective it is employed a Computational Fluid Dynamics (CFD) code to solve the governing equations of the turbulent heat transfer single-phase flow. The standard κ-ε model with improved wall function (Enhanced Wall Treatment) is used to closure turbulence problem. This study considered flow rates range of 2200–4200 m3/d (representing Reynolds numbers range of 27 000–133 000 approximately), Prandtl numbers 7–37, three configurations of different annular geometries, one concentric and two eccentric, together with the condition of the constant temperature on the motor surface (130 °C) and capsule (4 °C). The simulations are validated by comparing the Nusselt number in the developed region with the Gnielinski correlation. It is observed that if the constant heat flux condition were used, the motor temperature would have lower values at the beginning and larger at the end of the geometry. Therefore, the higher the Nusselt number, the greater the heat transfer, thus intensifying the cooling of the electric motor. In the eccentric geometry a momentum transfer from the lower to the upper annular region is observed, causing the Nusselt number present an angular variation. In eccentric geometries the flow develops in greater lengths, observing that the greater the eccentricity, the greater this length. Finally, for the ESP in the Skid system the use of an eccentric geometry is not adequate.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference16 articles.

1. ANSYS (2017) ANSYS Theory Guide, Canonsburg, PA. Available at https://ansyshelp.ansys.com/.

2. Bejan A. (2013) Convection heat transfer, 4th edn., John Wiley & Sons, Inc., Hoboken, NJ.

3. Determination of the temperature distribution of ESP motors under variable conditions of flow rate and loading

4. Numerical Simulation of Turbulent Flow in Concentric Annuli

5. Braga C.V.M. (1987) Análise Termohidráulica de Seções Anulares Lisas e Aletadas (in portuguesse), Tese (Doutorado), Pontificia Universidade Católica do Rio de Janeiro, Brazil, 339 p.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3