Thermal Modeling and Performance Investigation of Proton Exchange Membrane (PEM) Fuel Cell

Author:

Murad AliORCID,Kumar LaveetORCID,Harijan KhanjiORCID,Parhyar HallarORCID

Abstract

Abstract This research paper presents analysis of heat generation problem in Proton Exchange Membrane (PEM) fuel cell using COMSOL Multiphysics software. PEM fuel cells are widely recognized for their high electrical power output and environmental sustainability. However, in a PEM fuel cell around 50 to 60 % of energy generated from chemical reactions is dissipated as heat energy. To address this issue PEM fuel cell stack model is designed and thermal modeling is carried out to evaluate its performance. Based on thermal modeling of surface temperature distribution of cell it is found that the cathode side of PEM fuel cell is warmer and generates more heat as compared to other parts due to the exothermic reactions,slow reaction rate,joule heating effect and material properties.Moreover, it is also found that there is uniform temperature distribution across the cell due to rapid heat conduction from cathode side to the surface of the cell.The results of this study show that due to more heat generation on cathode side temperature will tend to increase.This increasing temperature enhancesthe average cell current density but as the average cell current density increases it reduces the average cell voltage thus declining the efficiency of PEM fuel cell. Hence ,there should be an optimal temperature range between 60 to 80°C for the better performance of a PEM fuel cell. Findings of this study can serve as a valuable resource for understanding heat generation process in PEM fuel cell for the development of efficient and reliable fuel cell technology in future.

Publisher

VFAST Research Platform

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Modeling of the Thermal Behavior in Passive Proton Exchange Membrane Fuel Cell;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3