Improved Mean Estimators for Population utilizing Dual Supplementary Characteristics under Simple Random Sampling

Author:

Hussain MujeebORCID,Zaman QamruzORCID,Khan LakhkarORCID,Sabir AbdurrahmanORCID

Abstract

This paper makes another addition to the existing literature of population mean estimation. An improved family of mean estimators for the population is suggested using simple random sampling and utilizing the information of dual supplementary characteristics. We have conducted an extensive theoretical and numerical investigation of these recommended estimators using the criteria of bias and mean square error. The study provides a derivation of the bias and mean square error of the recommended estimators, approximating up to the first order and compared with the existing estimators. The suggested estimators are also extensively studied numerically and compared using real-world data sets and simulation studies. The theoretical and numerical comparisons show that the estimators suggested in the study are much more efficient than the competitor estimators under all situations i.e. Bahl and Tuteja [21] and other existing estimators in the literature. Therefore, the suggested family of estimators can be applied to real-life problems to obtain better results than the existing mean estimators for the population.

Publisher

VFAST Research Platform

Reference29 articles.

1. Ahmad, S., Arslan, M., Khan, A., and Shabbir, J. (2021). A generalized exponential-type estimator for population mean using auxiliary attributes. Plos one, 16(5):e0246947.

2. Ahmad, S., Hussain, S., Shabbir, J., Aamir, M., El-Morshedy, M., Ahmad, Z., and Alrajhi, S. (2022). Improved generalized class of

3. estimators in estimating the finite population mean using two auxiliary variables under two-stage sampling. AIMS Mathematics,

4. (6):10609–10624.

5. Ahmad, S., Zahid, E., Shabbir, J., Aamir, M., Emam, W., Tashkandy, Y., and Ahmad, S. (2023). A simulation study: An enhanced generalized class of estimators for estimation of population proportion using twofold auxiliary attribute. Heliyon, 9(6).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3