An Efficient Deep Learning Approach for Prediction of Student Performance Using Neural Network

Author:

Namraiza ,Abid KamranORCID,Aslam NaeemORCID,Fuzail MuhammadORCID,Maqbool Muhammad SajidORCID,Kainat Sajid

Abstract

In recent years, schools have shown interest in utilizing data mining to improve the quality of education. To enhance academic performance, accurately predicting how students will perform in their classes is crucial, which is essential for their progress in further education. Some students encounter challenges upon entering higher education, and predicting their performance early on is vital to keeping them on the right track. Our research aims to assess student performance using various classification strategies to identify the most accurate one. We utilize a Kaggle dataset for this study. Initially, we clean up the dataset by removing duplicate records and filling in any missing information. Subsequently, we apply six different classifiers, including Neural Networks and methods such as Random Forest and Support Vector Machine, utilizing the Weka tool. Additionally, we employ Principal Component Analysis (PCA) to extract optimized features that enhance model accuracy. We evaluate all models on Training and Testing splits, as well as the 10-K Fold options provided by the Weka tool. Finally, we calculate Training Accuracy, Testing Accuracy, Precision, Recall, and F1-Score for each model and compare their results. Notably, Neural Networks and Random Forest demonstrate superior results compared to other models.  

Publisher

VFAST Research Platform

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3