Using Crank-Nicolson’s scheme to discretize the Laplacian in a polar gird system with symmetric and asymmetric lines

Author:

Mallah Rabnawaz,Siyal Wajid Ahmed,Aslam Saira,Sial Muhammad Suleman,Soomro Inayatullah

Abstract

Numerous techniques exist for solving and describing the Partial differential equation’s mathematical and computational model. The Laplacian operator is one of the most effective techniques for solving linear and nonlinear partial differential equations. It is quick, and researchers use it frequently because of its modern technique and high accuracy in results. The Crank-Nicolson (CN) scheme in the Cartesian coordinate system has been discussed in this research work. Using this method, a numerical approximation scheme in Cartesian coordinatesystem has been discretized on a 5 point stencil, extendable to nine points. The Tailor Series was used to discretize this scheme on 5-point stencils, which will be used in FORTRAN code for numerical approximation and can be visualized in OPEDX software. The Nicolson scheme is a finite difference scheme used to solve partial differential equations such as heat, wave, and diffusion equations in both 1-D and 2-D. Because of his extendable stencil, it will create accuracy and stability in the novel results of the scheme. These extendable stencils will reduce the error of the scheme and will assist researchers in finding novel results by solving ODES and PDES using the CN method.

Publisher

VFAST Research Platform

Reference19 articles.

1. [n.d.].

2. URL: https://mathworld.wolfram.com/LaplacianMatrix.html

3. Antoine, X. and Besse, C. [2003], ‘Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional schrödinger equation’, Journal of Computational Physics 188(1), 157–175.

4. Bruno-Alfonso, A., Cabezas-Gómez, L., Navarro, H. A. et al. [2012], ‘Alternate treatments of jacobian

5. singularities in polar coordinates within finite-difference schemes’, World Journal of Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3