Exact solution on the impact of slip condition for unsteady tank drainage flow of Ellis fluid

Author:

Shaikh Naina Salar,Memon Kamran Nazir,Sial Muhammad Suleman,Siddiqui A. M.

Abstract

In this paper, we look into the effect of slip condition on isothermal and incompressible Ellis fluid of an unsteady tank drainage flow. The non-linear PDE (partial differential equation) is solved exactly by applying the governing continuity and momentum equations, subject to the proper boundary condition, using the separation of variables approach. Unique situations this model put out by Ellis fluid is used to develop concepts like Newtonian, Power law model, and Bingham Plastic model solution. On setting the slip parameterexact solution for Ellis fluid flow is retrivred as well as Newtonian solution is bring back, which was done through Bernoulli's equation. Expressions for velocity field, pipe shear stress, volume flux, velocity average, depth of fluid in the tank at different times and also the relationship between length of the time be different with depth of the tank and the length of time required to complete the drainage is determined. Graphical representation is given of the effects of various development factors on the velocity field Vz and fluid depth H(t). The tank can empty faster for Ellis fluid compared to its special situations, according to the analogy of Ellis, Power law, Newtonian, and Binghan plastic fluids for the relation of depth with respect to time.

Publisher

VFAST Research Platform

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3