Delta Perturbation Method for Couette-Poiseuille flows in Third grade fluids

Author:

Memon Kamran Nazir,Mushtaque Ahsan,Shaikh Fozia,Ghoto AA,Siddiqui A. M.

Abstract

This work uses the Delta Perturbation Method (DPM) to theoretically evaluate the steady plane Couette-Poiseuille flowbetween two parallel plates for third-grade fluid.That'sa kind of perturbation approach and was deliveredwith the aid of Bender and his colleagues in the 1980s. Utilizing DPM, analytical solutions have been found from the governing continuity and momentum equations subject to the necessary boundary conditions. In this proposed model, the Newtonian solution is obtained through the substitution. It is possible to measure the velocity field, temperature distribution, volumetric flow rate, and average velocity of the fluid flow. We derived that the third-grade fluid's velocity will change in response to an increasing material constant from the visual and table representations of the impacts of different parameters on the velocity and temperature profiles.The suggested model additionally mentions temperature distribution losses with increases in thermal conductivity  and rises as a result of increases of dynamic viscosity , constant parameters and and material constant. Here we have also find out that temperature distribution and velocity profile enhance with higher magnitude of pressure gradient

Publisher

VFAST Research Platform

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3