Association between SAP and FynT: Inducible SH3 Domain-Mediated Interaction Controlled by Engagement of the SLAM Receptor

Author:

Chen Riyan1,Latour Sylvain12,Shi Xiaochu1,Veillette André134

Affiliation:

1. Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, Montréal, Québec, Canada

2. Unité INSERM U768, Hôpital Necker Enfants-Malades, Paris, France

3. Department of Medicine, University of Montréal, Montréal, Québec, Canada

4. Department of Medicine, McGill University, Montréal, Québec, Canada

Abstract

ABSTRACT SAP is an intracellular adaptor molecule composed almost exclusively of an SH2 domain. It is mutated in patients with X-linked lymphoproliferative disease, a human immunodeficiency. Several immune abnormalities were also identified in SAP-deficient mice. By way of its SH2 domain, SAP interacts with tyrosine-based motifs in the cytoplasmic domain of SLAM family receptors. SAP promotes SLAM family receptor-induced protein tyrosine phosphorylation, due to its capacity to recruit the Src-related kinase FynT. This unusual property relies on the existence of a second binding surface in the SAP SH2 domain, centered on arginine 78 of SAP, that binds directly to the FynT SH3 domain. Herein, we wanted to further understand the mechanisms controlling the interaction between SLAM-SAP and FynT. Our experiments showed that, unlike conventional associations mediated by SH3 domains, the interaction of the FynT SH3 domain with SLAM-SAP was strictly inducible. It was absolutely dependent on engagement of SLAM by extracellular ligands. We obtained evidence that this inducibility was not due to increased binding of SLAM to SAP following SLAM engagement. Furthermore, it could occur independently of any appreciable SLAM-dependent biochemical signal. In fact, our data indicated that the induced association of the FynT SH3 domain with SLAM-SAP was triggered by a change in the conformation of SLAM-associated SAP caused by SLAM engagement. Together, these data elucidate further the events initiating SLAM-SAP signaling in immune cells. Moreover, they identify a strictly inducible interaction mediated by an SH3 domain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3