The Streptococcus gordonii Surface Proteins GspB and Hsa Mediate Binding to Sialylated Carbohydrate Epitopes on the Platelet Membrane Glycoprotein Ibα

Author:

Bensing Barbara A.1,López José A.2,Sullam Paul M.1

Affiliation:

1. Division of Infectious Diseases, Veterans Affairs Medical Center and Department of Medicine, University of California, San Francisco, California

2. Thrombosis Research Section, Department of Medicine, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, Texas

Abstract

ABSTRACT Platelet binding by Streptococcus gordonii strain M99 is dependent on expression of the cell wall-anchored glycoprotein GspB. This large cell surface protein is exported from the M99 cytoplasm via a dedicated transport system that includes SecA2 and SecY2. GspB is highly similar to Hsa, a protein expressed by S. gordonii Challis that has been characterized as a sialic acid binding hemagglutinin. In this study, we compared the contribution of GspB and Hsa to the adherence of S. gordonii to selected glycoproteins. Our results indicate that GspB can mediate binding to a variety of sialylated glycoproteins. GspB facilitates binding to carbohydrates bearing sialic acid in either α(2-3) or α(2-6) linkages, with a slight preference for α(2-3) linkages. Furthermore, GspB readily mediates binding to sialic acid residues on immobilized glycocalicin, the extracellular portion of the platelet membrane glycoprotein (GP) Ibα (the ligand binding subunit of the platelet von Willebrand factor receptor complex GPIb-IX-V). Although Hsa is required for the binding of S. gordonii Challis to sialic acid, most of the Hsa expressed by Challis is retained in the cytoplasm. The deficiency in export is due, at least in part, to a nonsense mutation in secA2 . Hsa export can be enhanced by complementation with secA2 from M99, which also results in significantly greater binding to sialylated glycoproteins, including glycocalicin. The combined results indicate that GspB and Hsa contribute similar binding capabilities to M99 and Challis, respectively, but there may be subtle differences in the preferred epitopes to which these adhesins bind.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3