A Prolonged Outbreak of KPC-3-Producing Enterobacter cloacae and Klebsiella pneumoniae Driven by Multiple Mechanisms of Resistance Transmission at a Large Academic Burn Center

Author:

Kanamori Hajime12,Parobek Christian M.3,Juliano Jonathan J.1,van Duin David1,Cairns Bruce A.4,Weber David J.12,Rutala William A.12

Affiliation:

1. Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

2. Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, USA

3. University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

4. North Carolina Jaycee Burn Center, University of North Carolina Health Care, Chapel Hill, North Carolina, USA

Abstract

ABSTRACT Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacter cloacae has been recently recognized in the United States. Whole-genome sequencing (WGS) has become a useful tool for analysis of outbreaks and for determining transmission networks of multidrug-resistant organisms in health care settings, including carbapenem-resistant Enterobacteriaceae (CRE). We experienced a prolonged outbreak of CRE E. cloacae and K. pneumoniae over a 3-year period at a large academic burn center despite rigorous infection control measures. To understand the molecular mechanisms that sustained this outbreak, we investigated the CRE outbreak isolates by using WGS. Twenty-two clinical isolates of CRE, including E. cloacae ( n = 15) and K. pneumoniae ( n = 7), were sequenced and analyzed genetically. WGS revealed that this outbreak, which seemed epidemiologically unlinked, was in fact genetically linked over a prolonged period. Multiple mechanisms were found to account for the ongoing outbreak of KPC-3-producing E. cloacae and K. pneumoniae . This outbreak was primarily maintained by a clonal expansion of E. cloacae sequence type 114 (ST114) with distribution of multiple resistance determinants. Plasmid and transposon analyses suggested that the majority of bla KPC-3 was transmitted via an identical Tn 4401 b element on part of a common plasmid. WGS analysis demonstrated complex transmission dynamics within the burn center at levels of the strain and/or plasmid in association with a transposon, highlighting the versatility of KPC-producing Enterobacteriaceae in their ability to utilize multiple modes to resistance gene propagation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3