Author:
Bezalel L,Hadar Y,Fu P P,Freeman J P,Cerniglia C E
Abstract
The initial metabolites in the degradation of pyrene, anthracene, fluorene, and dibenzothiophene by Pleurotus ostreatus were isolated by high-pressure liquid chromatography and characterized by UV-visible, gas-chromatographic, mass-spectrometric, and (sup1)H nuclear magnetic resonance spectral techniques. The metabolites from pyrene, dibenzothiophene, anthracene, and fluorene amounted to 45, 84, 64, and 96% of the total organic-solvent-extractable metabolites, respectively. Pyrene was metabolized predominantly to pyrene trans-4,5-dihydrodiol. Anthracene was metabolized predominantly to anthracene trans-1,2-dihydrodiol and 9,10-anthraquinone. In contrast, fluorene and dibenzothiophene were oxidized at the aliphatic bridges instead of the aromatic rings. Fluorene was oxidized to 9-fluorenol and 9-fluorenone; dibenzothiophene was oxidized to the sulfoxide and sulfone. Circular dichroism spectroscopy revealed that the major enantiomer of anthracene trans-1,2-dihydrodiol was predominantly in the S,S configuration and the major enantiomer of the pyrene trans-4,5-dihydrodiol was predominantly R,R. These results indicate that the white rot fungus P. ostreatus initially metabolizes polycyclic aromatic hydrocarbons by reactions similar to those previously reported for nonligninolytic fungi. However, P. ostreatus, in contrast to nonligninolytic fungi, can mineralize these polycyclic aromatic hydrocarbons. The identity of the dihydrodiol metabolites implicates a cytochrome P-450 monooxygenase mechanism.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
172 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献