Functional dissection of the human Bc12 protein: sequence requirements for inhibition of apoptosis

Author:

Hunter J J1,Bond B L1,Parslow T G1

Affiliation:

1. Department of Pathology, University of California, San Francisco 94143-0506, USA.

Abstract

Overexpression of the cytoplasmic oncoprotein Bc12 blocks programmed cell death (apoptosis) in many cellular systems. To map the sequences in Bc12 that are necessary for its activity, we created a library of deletion-scanning mutants of this 239-amino-acid protein and tested their abilities to block staurosporine-induced fibroblast apoptosis, using a novel transient-transfection assay. Phenotypes of informative mutants were then confirmed by assaying for inhibition of steroid-induced apoptosis in stably transfected T-lymphoid cells. In accordance with earlier results, we found that Bc12 activity was only partially reduced after deletion of the hydrophobic tail that normally anchors it in cytoplasmic membranes. Essential sequences were found in the remainder of the protein and appeared to be organized in at least two discrete functional domains. The larger, more C-terminal region (within residues 90 to 203) encompassed, but extended beyond, two oligopeptide motifs called BH1 and BH2, which are known to mediate dimerization of Bc12 and related proteins. The second, more N-terminal regions (within residues 6 to 31) was not required for protein dimerization in vivo, but its deletion imparted a dominant negative phenotype, yielding mutants that promoted rather than inhibited apoptotic death. Residues 30 to 91 were not absolutely required for function; by deleting most of this region along with the hydrophobic tail, we derived a 155-residue mini-Bc12 that retains significant ability to inhibit apoptosis.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3