Affiliation:
1. Department of Pathology, Osaka University Medical School, Suita, Osaka, Japan.
Abstract
In the DNA binding domain of microphthalmia-associated transcription factor (MITF), four mutations are reported: mi, Mi wh, mi ew, and mi or. MITFs encoded by the mi, Mi wh, mi ew, and Mi or mutant alleles (mi-MITF, Mi wh-MITF, Mi ew-MITF, and Mi or-MITF, respectively) interfered with the DNA binding of wild-type MITF, TFE3, and another basic helix-loop-helix leucine zipper protein in vitro. Polyclonal antibody against MITF was produced and used for investigating the subcellular localization of mutant MITFs. Immunocytochemistry and immunoblotting revealed that more than 99% of wild-type MITF and Mi wh-MITF located in nuclei of transfected NIH 3T3 and 293T cells. In contrast, mi-MITF predominantly located in the cytoplasm of cells transfected with the corresponding plasmid. When the immunoglobulin G (IgG)-conjugated peptides representing a part of the DNA binding domain containing mi and Mi wh mutations were microinjected into the cytoplasm of NRK49F cells, wild-type peptide and Mi wh-type peptide-IgG conjugate localized in nuclei but mi-type peptide-IgG conjugate was detectable only in the cytoplasm. It was also demonstrated that the nuclear translocation potential of Mi or-MITF was normal but that Mi ew-MITF was impaired as well as mi-MITF. In cotransfection assay, a strong dominant negative effect of Mi wh-MITF against wild-type MITF-dependent transactivation system on tyrosinase promoter was observed, but mi-MITF had a small effect. However, by the conjugation of simian virus 40 large-T-antigen-derived nuclear localization signal to mi-MITF, the dominant negative effect was enhanced. Furthermore, we demonstrated that the interaction between wild-type MITF and mi-MITF occurred in the cytoplasm and that mi-MITF had an inhibitory effect on nuclear localization potential of wild-type MITF.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference53 articles.
1. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer ~E3 motif;Beckmann H.;Genes Dev.,1990
2. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator;Bentley N. J.;Mol. Cell. Biol.,1994
3. Interaction cloning: identification of helix-loop-helix zipper protein that interacts with c-Fos;Blanar M. A.;Science,1992
4. A helix-loop-helix protein related to the immunoglobulin E box-binding proteins;Carr C. S.;Mol. Cell. Biol.,1990
5. Nuclear localization signals in the core protein of hepatitis C virus;Chang S. C.;Biochem. Biophys. Res. Commun.,1994
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献