Interactions of the Mcm1 MADS Box Protein with Cofactors That Regulate Mating in Yeast

Author:

Mead Janet1,Bruning Adrian R.1,Gill Michael K.1,Steiner Andrew M.1,Acton Thomas B.1,Vershon Andrew K.1

Affiliation:

1. Waksman Institute of Microbiology and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-8020

Abstract

ABSTRACT The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins that control numerous cellular and developmental processes in yeast, Drosophila melanogaster , plants, and mammals. Although these proteins bind DNA on their own, they often combine with different cofactors to bind with increased affinity and specificity to their target sites. To understand how this class of proteins functions, we have made a series of alanine substitutions in the MADS box domain of Mcm1 and examined the effects of these mutations in combination with its cofactors that regulate mating in yeast. Our results indicate which residues of Mcm1 are essential for viability and transcriptional regulation with its cofactors in vivo. Most of the mutations in Mcm1 that are lethal affect DNA-binding affinity. Interestingly, the lethality of many of these mutations can be suppressed if the MCM1 gene is expressed from a high-copy-number plasmid. Although many of the alanine substitutions affect the ability of Mcm1 to activate transcription alone or in combination with the α1 and Ste12 cofactors, most mutations have little or no effect on Mcm1-mediated repression in combination with the α2 cofactor. Even nonconservative amino acid substitutions of residues in Mcm1 that directly contact α2 do not significantly affect repression. These results suggest that within the same region of the Mcm1 MADS box domain, there are different requirements for interaction with α2 than for interaction with either α1 or Ste12. Our results suggest how a small domain, the MADS box, interacts with multiple cofactors to achieve specificity in transcriptional regulation and how subtle differences in the sequences of different MADS box proteins can influence the interactions with specific cofactors while not affecting the interactions with common cofactors.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3