Affiliation:
1. Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), CEA-Grenoble, 38054 Grenoble Cedex 9, France
2. Department of Biology, Indiana University, Bloomington, Indiana 47405
Abstract
SUMMARY
The Reg regulon from
Rhodobacter capsulatus
and
Rhodobacter sphaeroides
encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome
c
oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology,Infectious Diseases
Reference96 articles.
1. Abada, E. M., A. Balzer, A. Jager, and G. Klug. 2002. Bacteriochlorophyll-dependent expression of genes for pigment-binding proteins in Rhodobacter capsulatus involves the RegB/RegA two-component system. Mol. Genet. Genomics267:202-209.
2. Barber, D. R., and T. J. Donohue. 1998. Pathways for transcriptional activation of a glutathione-dependent formaldehyde dehydrogenase gene. J. Mol. Biol.280:775-784.
3. Bauer, C. E. 2001. Regulating synthesis of the purple bacterial photosystem, p. 67-83. In E.-M. Aro and B. Andersson (ed.), Regulation of photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands.
4. Bauer, C. E., and T. H. Bird. 1996. Regulatory circuits controlling photosynthesis gene expression. Cell85:5-8.
5. Bauer, C. E., S. Elsen, L. R. Swem, D. L. Swem, and S. Masuda. 2002. Redox and light regulation of gene expression in photosynthetic prokaryotes. Philos. Trans. R. Soc. London. Ser. B358:147-154.
Cited by
190 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献