Role for Gr-1+Cells in the Control of High-Dose Mycobacterium bovis Recombinant BCG

Author:

Panas Michael W.,Letvin Norman L.

Abstract

ABSTRACTMycobacterium bovisbacillus Calmette-Guérin (BCG) is an attractive target for development as a live vaccine vector delivering transgenic antigens from HIV and other pathogens. Most studies aimed at defining the clearance of BCG have been performed at doses between 102and 104CFU. Interestingly, however, recombinant BCG (rBCG) administered at doses of >106CFU effectively generates antigen-specific T-cell responses and primes for heterologous boost responses. Thus, defining clearance at high doses might aid in the optimization of rBCG as a vector. In this study, we used bioluminescence imaging to examine the kinetics of rBCG transgene expression and clearance in mice immunized with 5 × 107CFU rBCG expressing luciferase. Similar to studies using low-dose rBCG, our results demonstrate that the adaptive immune response is necessary for long-term control of rBCG beginning 9 days after immunizing mice. However, in contrast to these reports, we observed that the majority of mycobacterial antigen was eliminated prior to day 9. By examining knockout and antibody-mediated depletion mouse models, we demonstrate that the rapid clearance of rBCG occurs in the first 24 h and is mediated by Gr-1+cells. As Gr-1+granulocytes have been described as having no impact on BCG clearance at low doses, our results reveal an unappreciated role for Gr-1+neutrophils and inflammatory monocytes in the clearance of high-dose rBCG. This work demonstrates the potential of applying bioluminescence imaging to rBCG in order to gain an understanding of the immune response and increase the efficacy of rBCG as a vaccine vector.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3