Affiliation:
1. Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
Abstract
ABSTRACT
The α-factor receptor Ste2p is a G protein-coupled receptor (GPCR) expressed on the surface of
MAT
a
haploid cells of the yeast
Saccharomyces cerevisiae
. Binding of α-factor to Ste2p results in activation of a heterotrimeric G protein and of the pheromone response pathway. Functional interactions between α-factor receptors, such as dominant-negative effects and recessive behavior of constitutive and hypersensitive mutant receptors, have been reported previously. We show here that dominant-negative effects of mutant receptors persist over a wide range of ratios of the abundances of G protein to receptor and that such effects are not blocked by covalent fusion of G protein α subunits to normal receptors. In addition, we detected dominant effects of mutant C-terminally truncated receptors, which had not been previously reported to act in a dominant manner. Furthermore, coexpression of C-terminally truncated receptors with constitutively active mutant receptors results in enhancement of constitutive signaling. Together with previous evidence for oligomerization of Ste2p receptors, these results are consistent with the idea that functional interactions between coexpressed receptors arise from physical interactions between them rather than from competition for limiting downstream components, such as G proteins.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献