DNA Palindromes with a Modest Arm Length of ≳20 Base Pairs Are a Significant Target for Recombinant Adeno-Associated Virus Vector Integration in the Liver, Muscles, and Heart in Mice

Author:

Inagaki Katsuya1,Lewis Susanna M.2,Wu Xiaolin3,Ma Congrong1,Munroe David J.3,Fuess Sally4,Storm Theresa A.4,Kay Mark A.4,Nakai Hiroyuki1

Affiliation:

1. Department of Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261

2. Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L8, Canada

3. Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702

4. Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, California 94305

Abstract

ABSTRACT Our previous study has shown that recombinant adeno-associated virus (rAAV) vector integrates preferentially in genes, near transcription start sites and CpG islands in mouse liver (H. Nakai, X. Wu, S. Fuess, T. A. Storm, D. Munroe, E. Montini, S. M. Burgess, M. Grompe, and M. A. Kay, J. Virol. 79:3606-3614, 2005). However, the previous method relied on in vivo selection of rAAV integrants and could be employed for the liver but not for other tissues. Here, we describe a novel method for high-throughput rAAV integration site analysis that does not rely on marker gene expression, selection, or cell division, and therefore it can identify rAAV integration sites in nondividing cells without cell manipulations. Using this new method, we identified and characterized a total of 997 rAAV integration sites in mouse liver, skeletal muscle, and heart, transduced with rAAV2 or rAAV8 vector. The results support our previous observations, but notably they have revealed that DNA palindromes with an arm length of ≳20 bp (total length, ≳40 bp) are a significant target for rAAV integration. Up to ∼30% of total integration events occurred in the vicinity of DNA palindromes with an arm length of ≳20 bp. Considering that DNA palindromes may constitute fragile genomic sites, our results support the notion that rAAV integrates at chromosomal sites susceptible to breakage or preexisting breakage sites. The use of rAAV to label fragile genomic sites may provide an important new tool for probing the intrinsic source of ongoing genomic instability in various tissues in animals, studying DNA palindrome metabolism in vivo, and understanding their possible contributions to carcinogenesis and aging.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3