Characterization of a Novel Intracellularly Activated Gene from Salmonella enterica Serovar Typhi

Author:

Basso Holger1,Rharbaoui Faiza1,Staendner Lothar H.1,Medina Eva1,García-Del Portillo Francisco2,Guzmán Carlos A.1

Affiliation:

1. Division of Microbiology, GBF—German Research Centre for Biotechnology, D-38124 Braunschweig, Germany

2. Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049-Madrid, Spain

Abstract

ABSTRACT A Salmonella enterica serovar Typhi gene that is selectively up-regulated upon bacterial invasion of eukaryotic cells was characterized. The open reading frame encodes a 298-amino-acid hydrophobic polypeptide (30.8 kDa), which is predicted to be an integral membrane protein with nine membrane-spanning domains. The protein is closely related (87 to 94% reliability) to different transport and permease systems. Gene expression under laboratory conditions was relatively weak; however, sevenfold induction was observed in a high-osmolarity medium (300 mM NaCl). The growth pattern in a laboratory medium of a serovar Typhi strain Ty2 derivative containing a 735-bp in-frame deletion in this gene, named gaiA (for gene activated intracellularly), was not affected. In contrast, the mutant was partially impaired in intracellular survival in murine peritoneal macrophages, as well as in human monocyte-derived macrophages. However, in the case of human macrophages, this survival defect was modest and evident only at late infection times (24 h). Despite the distinct intracellular survival kinetics displayed in macrophages of different species, the gaiA null mutant was significantly affected in its potential to trigger apoptosis in both murine and human macrophages. Provision of the gaiA gene in trans resulted in complementation of these phenotypes. Interestingly, the absence of a functional gaiA gene caused a marked attenuation in the mouse mucin model, as shown by the increase (3 orders of magnitude) in the 50% lethal dose of the mutant strain over that of the parental strain Ty2 ( P ≤ 0.05). Altogether, these data indicate that the product encoded by the gaiA gene is required for triggering apoptosis and bacterial survival within murine macrophages, which is consistent with the in vivo results obtained in the mouse mucin model. However, gaiA was not required for initial intracellular survival in human cells, indicating that its role in the natural host might be more complex than is suggested by the studies performed in the murine system.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3