Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms

Author:

Stewart P S1

Affiliation:

1. Center for Biofilm Engineering, Montana State University, Bozeman 59717-0398.

Abstract

A computer model of biofilm dynamics was adapted to incorporate the activity of an antimicrobial agent on bacterial biofilm. The model was used to evaluate the plausibility of two mechanisms of biofilm antibiotic resistance by qualitative comparison with data from a well-characterized experimental system (H. Anwar, J. L. Strap, and J. W. Costerton, Antimicrob. Agents Chemother. 36:1208-1214, 1992). The two mechanisms involved either depletion of the antibiotic by reaction with biomass or physiological resistance due to reduced bacterial growth rates in the biofilm. Both mechanisms predicted the experimentally observed resistance of 7-day-old Pseudomonas aeruginosa biofilms compared with that of 2-day-old ones. A version of the model that incorporated growth rate-dependent killing predicted reduced susceptibility of thicker biofilms because oxygen was exhausted within these biofilms, leading to very slow growth in part of the biofilm. A version of the model that incorporated a destructive reaction of the antibiotic with biomass likewise accounted for the relative resistance of thicker biofilms. Resistance in this latter case was due to depletion of the antibiotic in the bulk fluid rather than development of a gradient in the antibiotic concentration within the biofilm. The modeling results predicted differences between the two cases, such as in the survival profiles within the biofilm, that could permit these resistance mechanisms to be experimentally distinguished.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference26 articles.

1. Dynamic interactions of biofilms of mucoid Pseudomotcas aeruginosa with tobramycin and piperacillin;Anwar H.;Antimicrob. Agents Chemother.,1992

2. Bailey J. E. and D. F. Ollis. 1986. Biochemical engineering fundamentals. McGraw-Hill New York.

3. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect;Brown M. R. W.;J. Antimicrob. Chemother.,1988

4. Bacterial biofilms in nature and disease;Costerton J. W.;Ann. Rev. Microbiol.,1987

5. A finite-difference computer model of solute diffusion in bacterial films with simultaneous metabolism and chemical reaction;Dibdin G. H.;CABIOS,1992

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3