Redundant and scattered genetic determinants for coumarin biodegradation in Pseudomonas sp. strain NyZ480

Author:

Gu Yichao12ORCID,Li Tao12ORCID,Zhou Ning-Yi12ORCID

Affiliation:

1. State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

2. Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China

Abstract

ABSTRACT Coumarin (COU) is both a naturally derived phytotoxin and a synthetic pollutant which causes hepatotoxicity in susceptible humans. Microbes have potentials in COU biodegradation; however, its underlying genetic determinants remain unknown. Pseudomonas sp. strain NyZ480, a robust COU degrader, has been isolated and proven to grow on COU as its sole carbon source. In this study, five homologs of xenobiotic reductase A scattered throughout the chromosome of strain NyZ480 were identified, which catalyzed the conversion of COU to dihydrocoumarin (DHC) in vitro . Phylogenetic analysis indicated that these COU reductases belong to different subgroups of the old yellow enzyme family. Moreover, two hydrolases (CouB1 and CouB2) homologous to the 3,4-dihydrocoumarin hydrolase in the fluorene degradation were found to accelerate the generation of melilotic acid (MA) from DHC. CouC, a new member from the group A flavin monooxygenase, was heterologously expressed and purified, catalyzing the hydroxylation of MA to produce 3-(2,3-dihydroxyphenyl)propionate (DHPP). Gene deletion and complementation of couC indicated that couC played an essential role in the COU catabolism in strain NyZ480, considering that the genes involved in the downstream catabolism of DHPP have been characterized (Y. Xu and N. Y. Zhou, Appl Environ Microbiol 86:e02385-19, 2020) and homologous catabolic cluster exists in strain NyZ480. This study elucidated the genetic determinants for complete degradation of COU by Pseudomonas sp. strain NyZ480. IMPORTANCE Coumarin (COU) is a phytochemical widely distributed in the plant kingdom and also artificially produced as an ingredient for personal care products. Hence, the environmental occurrence of COU has been reported in different places. Toxicologically, COU was proven hepatotoxic to individuals with mutations in the CYP2A6 gene and listed as a group 3 carcinogen by the International Agency for Research on Cancer and thus has raised increasing concerns. Until now, different physicochemical methods have been developed for the removal of COU, whereas their practical applications were hampered due to high cost and the risk of secondary contamination. In this study, genetic evidence and biochemical characterization of the COU degradation by Pseudomonas sp. strain NyZ480 are presented. With the gene and strain resources provided here, better managements of the hazards that humans face from COU could be achieved, and the possible microbiota-plant interaction mediated by the COU-utilizing rhizobacteria could also be investigated.

Funder

National Key R & D Program of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3