Herpesvirus saimiri MicroRNAs Preferentially Target Host Cell Cycle Regulators

Author:

Guo Yang Eric1,Oei Theresa1,Steitz Joan A.1

Affiliation:

1. Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA

Abstract

ABSTRACT In latently infected marmoset T cells, Herpesvirus saimiri (HVS) expresses six microRNAs (known as miR-HSURs [ H. saimiri U-rich RNAs]). The viral miR-HSURs are processed from chimeric primary transcripts, each containing a noncoding U-rich RNA (HSUR) and a pre-miRNA hairpin. To uncover the functions of miR-HSURs, we identified mRNA targets in infected cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). HITS-CLIP revealed hundreds of robust Argonaute (Ago) binding sites mediated by miR-HSURs that map to the host genome but few in the HVS genome. Gene ontology analysis showed that several pathways regulating the cell cycle are enriched among cellular targets of miR-HSURs. Interestingly, miR-HSUR4-3p represses expression of the p300 transcriptional coactivator by binding the open reading frame of its mRNA. miR-HSUR5-3p directly regulates BiP, an endoplasmic reticulum (ER)-localized chaperone facilitating maturation of major histocompatibility complex class I (MHC-I) and the antiviral response. miR-HSUR5-3p also robustly downregulates WEE1, a key negative regulator of cell cycle progression, leading to reduced phosphorylation of its substrate, cyclin-dependent kinase (Cdk1). Consistently, inhibition of miR-HSUR5-3p in HVS-infected cells decreases their proliferation. Together, our results shed light on the roles of viral miRNAs in cellular transformation and viral latency. IMPORTANCE Viruses express miRNAs during various stages of infection, suggesting that viral miRNAs play critical roles in the viral life cycle. Compared to protein-coding genes, the functions of viral miRNAs are not well understood. This is because it has been challenging to identify their mRNA targets. Here, we focused on the functions of the recently discovered HVS miRNAs, called miR-HSURs. HVS is an oncogenic gammaherpesvirus that causes acute T-cell lymphomas and leukemias in New World primates and transforms human T cells. A better understanding of HVS biology will help advance our knowledge of virus-induced oncogenesis. Because numerous cellular miRNAs play crucial roles in cancer, viral miRNAs from the highly oncogenic HVS might also be important for transformation. Here, we found that the miR-HSURs preferentially modulate expression of host cell cycle regulators, as well as antiviral response factors. Our work provides further insight into the functions of herpesviral miRNAs in virus-induced oncogenesis and latency.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3