Dynamics of FtsZ Assembly during Sporulation in Streptomyces coelicolor A3(2)

Author:

Grantcharova Nina1,Lustig Ulrika1,Flärdh Klas1

Affiliation:

1. Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden

Abstract

ABSTRACT FtsZ, the bacterial tubulin homologue, is the main player in at least two distinct processes of cell division during the development of Streptomyces coelicolor A3(2). It forms cytokinetic rings and is required for the formation of both the widely spaced hyphal cross walls in the substrate mycelium and the specialized septation that converts sporogenic aerial hyphae into spores. The latter developmentally controlled septation involves the coordinated assembly of large numbers of FtsZ rings in each sporulating hyphal cell. We used an FtsZ-enhanced green fluorescent protein (EGFP) translational fusion to visualize the progression of FtsZ ring assembly in vivo during sporulation of aerial hyphae. This revealed that the regular placement of multiple FtsZ rings and initiation of cytokinesis was preceded by a protracted phase during which spiral-shaped FtsZ intermediates were detected along the length of the aerial hyphal cell. Time course experiments indicated that they were remodeled and gradually replaced by regularly spaced FtsZ rings. Such spiral-shaped filaments could also be detected with immunofluorescence microscopy using an antiserum against FtsZ. Based on our observations, we propose a model for the progression of Z-ring assembly during sporulation of S. coelicolor . Furthermore, mutants lacking the developmental regulatory genes whiA , whiB , whiG , whiH , and whiI were investigated. They failed in up-regulation of the expression of FtsZ-EGFP in aerial hyphae, which is consistent with the known effects of these genes on ftsZ transcription.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3