Alternative Splicing Produces Two Endoglucanases with One or Two Carbohydrate-Binding Modules in Mucor circinelloides

Author:

Baba Yuko1,Shimonaka Atsushi1,Koga Jinichiro1,Kubota Hidetoshi1,Kono Toshiaki1

Affiliation:

1. Food and Health R&D Laboratories, Meiji Seika Kaisha, Ltd., 5-3-1, Chiyoda, Sakado-shi, Saitama 350-0289, Japan

Abstract

ABSTRACT We previously cloned three endoglucanase genes, rce1 , rce2 , and rce3 , that were isolated from Rhizopus oryzae as the first cellulase genes from a member of the subdivision Zygomycota. In this study, two cDNAs homologous to the rce1 gene, designated the mce1 and mce2 cDNAs, were cloned from Mucor circinelloides , a member of the subdivision Zygomycota. The mce1 cDNA encoded an endoglucanase (family 45 glycoside hydrolase) having one carbohydrate-binding module (CBM), designated MCE1, and the mce2 cDNA encoded the same endoglucanase having two tandem repeated CBMs, designated MCE2. The two cDNAs contained the same sequences but with a 147-bp insertion. The corresponding genomic mce gene consisted of four exons. The mce1 cDNA was created from exons 1, 3, and 4, and the mce2 cDNA was created from exons 1, 2, 3, and 4. These results indicate that the mce1 and mce2 cDNAs were created from one genomic mce gene by alternative splicing. MCE1 and MCE2, purified to apparent homogeneity from the culture supernatant of M. circinelloides , had molecular masses of 43 and 47 kDa, respectively. The carboxymethyl cellulase specific activity of MCE2 was almost the same as that of MCE1, whereas the Avicelase specific activity of MCE2 was two times higher than that of MCE1. Furthermore, MCE2, whose two tandem CBMs might be more effective for degradation of crystalline cellulose than one CBM, was secreted only at an early culture stage when crystalline cellulose was abundant.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3