Exopolysaccharide Sugars Contribute to Biofilm Formation by Salmonella enterica Serovar Typhimurium on HEp-2 Cells and Chicken Intestinal Epithelium

Author:

Ledeboer Nathan A.1,Jones Bradley D.1

Affiliation:

1. Department of Microbiology, Roy J. and Lucille A. Carver School of Medicine, University of Iowa, Iowa City, Iowa 52242-1109

Abstract

ABSTRACT Recently, we demonstrated that Salmonella enterica serovar Typhimurium can form biofilm on HEp-2 cells in a type 1 fimbria-dependent manner. Previous work on Salmonella exopolysaccharide (EPS) in biofilm indicated that the EPS composition can vary based upon the substratum on which the bacterial biofilm forms. We have investigated the role of genes important in the production of colanic acid and cellulose, common components of EPS. A mutation in the colanic acid biosynthetic gene, wcaM , was introduced into S. enterica serovar Typhimurium strain BJ2710 and was found to disrupt biofilm formation on HEp-2 cells and chicken intestinal tissue, although biofilm formation on a plastic surface was unaffected. Complementation of the wcaM mutant with the functional gene restored the biofilm phenotype observed in the parent strain. A mutation in the putative cellulose biosynthetic gene, yhjN , was found to disrupt biofilm formation on HEp-2 cells and chicken intestinal epithelium, as well as on a plastic surface. Our data indicate that Salmonella attachment to, and growth on, eukaryotic cells represent complex interactions that are facilitated by species of EPS.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3