A Synechococcus P glnA :: luxAB Fusion for Estimation of Nitrogen Bioavailability to Freshwater Cyanobacteria

Author:

Gillor Osnat1,Harush Ayelet1,Hadas Ora2,Post Anton F.3,Belkin Shimshon1

Affiliation:

1. Environmental Sciences, The Fredy and Nadin Herrmann Graduate School of Applied Science, The Hebrew University, Jerusalem 91904

2. Israel Oceanographic and Limnological Research, Yigal Allon Kinneret Limnological Laboratory, Tiberias 14102

3. The H. Steinitz Marine Biology Laboratory, Interuniversity Institute for Marine Sciences, Eilat 88103, Israel

Abstract

ABSTRACT In contrast to extensive studies of phosphorus, widely considered the main nutrient limiting phytoplankton biomass in freshwater ecosystems, there have been few studies on the role of nitrogen in controlling phytoplankton populations. This situation may be due partly to the complexity in estimating its utilization and bioavailability. In an attempt to provide a novel tool for this purpose, we fused the promoter of the glutamine synthetase-encoding gene, P glnA , from Synechococcus sp. strain PCC7942 to the luxAB luciferase-encoding genes of the bioluminescent bacterium Vibrio harveyi . The resulting construct was introduced into a neutral site on the Synechococcus chromosome to yield the reporter strain GSL. Light emission by this strain was dependent upon ambient nitrogen concentrations. The linear response range of the emitted luminescence was 1 mM to 1 μM for the inorganic nitrogen species tested (ammonium, nitrate, and nitrite) and 10- to 50-fold lower for glutamine and urea. When water samples collected from along a depth profile in Lake Kinneret (Israel) were exposed to the reporter strain, the bioluminescence of the reporter strain mirrored the total dissolved nitrogen concentrations determined for the same samples and was shown to be a sensitive indicator of the concentration of bioavailable nitrogen.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3