Microbial degradation of chlorinated acetophenones

Author:

Havel J1,Reineke W1

Affiliation:

1. Chemische Mikrobiologie, Bergische Universität-Gesamthochschule Wuppertal, Germany.

Abstract

A defined mixed culture, consisting of an Arthrobacter sp. and a Micrococcus sp. and able to grow with 4-chloroacetophenone as a sole source of carbon and energy, was isolated. 4-Chlorophenyl acetate, 4-chlorophenol, and 4-chlorocatechol were identified as metabolites through comparison of retention times and UV spectra with those of standard substances. The proposed pathway was further confirmed by investigation of enzymes. The roles of the two collaborating strains were studied by growth experiments and on the level of enzymes. If transient accumulation of 4-chlorophenol was avoided either by the use of phenol-absorbing substances or by careful supplement of 4-chloroacetophenone, the Arthrobacter sp. was able to grow as a pure culture with 4-chloroacetophenone as a sole source of carbon and energy. Several mono-, di-, and trichlorinated acetophenones were mineralized by the Arthrobacter sp.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3