Affiliation:
1. Department of Animal Sciences, University of Kentucky, Lexington 40546-0215.
Abstract
Cellulose degradation and metabolism in the rumen can be adversely affected by the presence of soluble sugars, but relatively little information is available on substrate preferences of cellulolytic bacteria. When the ruminal bacterium Ruminococcus albus was incubated with a combination of cellobiose and glucose, the organism preferentially utilized the disaccharide. This preference appeared to be related to repression of glucose uptake systems in cellobiose-grown cells. Glucose transport kinetics exhibited low- and high-affinity uptake, and high-affinity transport was apparently driven by ATP hydrolysis. Bacterial yield in continuous culture was as much as 38% greater when the organism was grown on cellobiose versus glucose, and the increased yield could be partially attributed to constitutive cellobiose phosphorylase activity. The maintenance coefficient of glucose-grown cells was significantly greater than that of cells provided with cellobiose (0.225 g of glucose per g of protein per h versus 0.042 g of cellobiose per g of protein per h), and this result suggested that more energy was devoted to glucose uptake. Substrate affinities were examined in carbon-excess continuous culture, and affinities for glucose and cellobiose were relatively low (0.97 and 3.16 mM, respectively). Although R. albus maintained a proton motive force of approximately 60 mV from pH 6.7 to 5.5, growth ceased below pH 6.0, and this inhibition of growth may have been caused by a depletion of ATP at low pH.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献