Processing the nonstructural polyproteins of Sindbis virus: study of the kinetics in vivo by using monospecific antibodies

Author:

Hardy W R1,Strauss J H1

Affiliation:

1. Division of Biology, California Institute of Technology, Pasadena 91125.

Abstract

Plasmids were constructed which contained a large portion of each of the four nonstructural genes of Sindbis virus fused to the N-terminal two-thirds of the trpE gene of Escherichia coli. The large quantity of fusion protein induced from cells containing these plasmids was subsequently used as an antigen to generate polyclonal antisera in rabbits. Each antiserum was specific for the corresponding nonstructural protein and allowed ready identification of each nonstructural protein and of precursors containing the sequences of two or more nonstructural proteins. These antisera were used to determine the stability of the mature nonstructural proteins and to examine the kinetics of processing of the nonstructural proteins from their respective precursors in vivo. Pulse-chase experiments showed that the precursor P123 is cleaved with a half-life of approximately 19 min to produce P12 and nsP3; P12 is then cleaved with a half-life of approximately 9 min to produce nsP1 and nsP2. Thus, although the rate of cleavage between nsP1 and nsP2 is faster than that between nsP2 and nsP3, the latter cleavage must occur first and is therefore the rate-limiting step. The rate at which P34 is chased suggests that the cleavage between nsP3 and nsP4 is the last to occur; however the regulation of nsP4 function in Sindbis virus-infected cells may be even more complex than was previously thought. The products nsP1 and nsP2 (and nsP4) are relatively stable; nsP3, however, is unstable, with a half-life of about 1 h, and appears to be modified to produce heterodisperse, higher-molecular-mass forms. In general, the processing schemes used by Sindbis virus and Semliki Forest virus appear very similar, the major difference being that most nsP3 in Sindbis virus results from termination at an opal condon, whereas in Semliki Forest virus cleavage of the P34 precursor is required.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3