Phosphorylation of Eukaryotic Translation Initiation Factor 2α Coordinates rRNA Transcription and Translation Inhibition during Endoplasmic Reticulum Stress

Author:

DuRose Jenny B.1,Scheuner Donalyn2,Kaufman Randal J.2,Rothblum Lawrence I.3,Niwa Maho1

Affiliation:

1. Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0377

2. Department of Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109

3. Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104

Abstract

ABSTRACT The endoplasmic reticulum (ER) is the major cellular compartment where folding and maturation of secretory and membrane proteins take place. When protein folding needs exceed the capacity of the ER, the unfolded protein response (UPR) pathway modulates gene expression and downregulates protein translation to restore homeostasis. Here, we report that the UPR downregulates the synthesis of rRNA by inactivation of the RNA polymerase I basal transcription factor RRN3/TIF-IA. Inhibition of rRNA synthesis does not appear to involve the well-characterized mTOR (mammalian target of rapamycin) pathway; instead, PERK-dependent phosphorylation of eIF2α plays a critical role in the inactivation of RRN3/TIF-IA. Downregulation of rRNA transcription occurs simultaneously or slightly prior to eIF2α phosphorylation-induced translation repression. Since rRNA is the most abundant RNA species, constituting ∼90% of total cellular RNA, its downregulation exerts a significant impact on cell physiology. Our study demonstrates the first link between regulation of translation and rRNA synthesis with phosphorylation of eIF2α, suggesting that this pathway may be broadly utilized by stresses that activate eIF2α kinases in order to coordinately regulate translation and ribosome biogenesis during cellular stress.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3