Abstract
We describe the identification and characterization of two genes and their gene products responsible for determining receptor binding and pilus length in type 1-piliated Escherichia coli. One gene, pilE, conferred the ability of piliated cells to agglutinate guinea pig erythrocytes. The other gene, pilF, determined pilus length, in that mutants having lesions in pilF had very long pili. The two genes were detected after Tn5 mutagenesis of a cloned segment of DNA that normally complemented a pilE lesion in the chromosome. Thus, lesions in pilE or pilF on the cloned segment resulted in mutants having the PilE- phenotype (piliated but unable to agglutinate erythrocytes). Introduction of the plasmid-encoded mutant alleles of pilE and pilF into the chromosome followed by electron microscopic examination of the mutants showed that only lesions in pilF conferred the striking increase in pilus length. Mutations in pilF could be complemented in trans by the original cloned segment to produce cells with parental-length pili. Minicell transcription and translation of the cloned pilE and pilF genes having representative Tn5 insertion mutations showed that the pilE gene product was a protein of ca. 31 kilodaltons and that the pilF gene product was a protein of ca. 18 kilodaltons. We believe that the pilF gene product may act as a competitive inhibitor of pilus polymerization. Thus, pilus length may be controlled by the ratio of pilin to pilF gene product present within the cell.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献